MATHS SUMMER WORK 2025

Fractions 1

- 1. What is the value of $\frac{2006}{8} + \frac{6002}{8}$
- 5. What is the value of
- There are 84 animals in a field
 11 are cows
 45 are sheep
 The rest are pigs

- How many of these calculations equal 1 Give reasons
- What fraction of the animals are pigs? Give you answer in simplest form

$$\frac{1}{2} + \frac{1}{2}$$
 $\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} \times \frac{1}{2}$ $\frac{1}{2} \div \frac{1}{2}$

3. Simplify fully $\frac{x}{6} + \frac{3x}{4}$

7. Sally has 30m of ribbon.
She cuts lengths of 2³/₅ metres from the ribbon. Sally says she has enough ribbon to cut 12 lengths. Is she correct? You must show all workings

4. Calculate $\frac{5}{6} \times \frac{3}{5}$

8. Express as a single fraction $\frac{2a}{3} - \frac{b}{4}$

give your answer in simplest form

⊘

Indices 2

Simplify the following

1.
$$t^5 \times t^4 =$$

5.
$$(8)^{\frac{1}{3}} =$$

2.
$$\frac{8^7}{8^2}$$
 =

6.
$$y^0 =$$

3.
$$(3^4)^2 =$$

7. What is
$$4^{-3} =$$

4.
$$\frac{5^7 \times 5}{(5^3)^3} =$$

8. What is
$$\left(\frac{2}{3}\right)^{-2} =$$

⊘

Surds 2

- 1. Simplify $\sqrt{d} + 6\sqrt{d} 3\sqrt{d}$
- 5. Simplify $\frac{\sqrt{125} 2\sqrt{20}}{\sqrt{5}}$

- 2. Simplify $2\sqrt{b} \times 4\sqrt{3}$
- 6. Rationalise the denominator of $\frac{2\sqrt{2}}{\sqrt{5}}$
- 3. Simplify fully $(4\sqrt{5})^2$
- 7. Evaluate $\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{\sqrt{6}}$
- 4. Write $\sqrt{75} + \sqrt{48} 2\sqrt{12}$ in the form $k\sqrt{3}$
- 8. A triangle has base of $3\sqrt{2}$ and a perpendicular height of $5\sqrt{8}$

Calculate the area of the triangle

⊘

Expanding 2

1. Expand y(2y - 3)

- 5. Multiply the expressions y and y + 4 Which of these expressions show the result?
- Expand 2x²(3xy 2x³)

- 5y y(y+4)
- $y^2 + 4y$
- 4y + 4

- 3. Expand and simplify
 - a. 5(x-4) + 3(2x+5)
- 4. Expand and simplify
 - a. $4(\sqrt{2}-3)+2(\sqrt{2}+2)$
- 6. A rectangle of width 3cm and width x + 4 cm is made larger by doubling its side lengths. What is the area, in cm² of the larger rectangle?
- 7. Expand and simplify 4 3(2 a + t) t
- 8. Expand and simplify

$$\frac{a}{2}\left(3+\frac{a}{4}\right)+\frac{a}{3}\left(2+\frac{a}{2}\right)$$

Expanding 2

a.
$$(2x+3)(x-2)$$

i.
$$3x(x+3)+4(x+3)$$

i.
$$(x+6)^2 + (x-3)^2$$

4. Expand and simplify
$$(2 - \sqrt{3})^2$$

5. Simplify
$$\frac{2}{(x+3)} + \frac{x-3}{x}$$

6. Expand and simplify
$$(x^3 - 7)(x^3 + 7)$$

1.
$$(3x + 2)(4x^2 + 2x - 3)$$

8. Simplify
$$\frac{2x-2}{(x+2)} - \frac{x-2}{3x}$$

⊘

Summary and review

1. Expand and simplify

$$\left(\frac{1}{3}x + \frac{1}{9}\right)(3x - \frac{2}{3})$$

5. Find the volume of a cube with side length

2. Expand and simplify
$$(x+1)(x+2)(x+3)$$

6. Expand and simplify $(x^2-2)(x^2+2)(x+1)$

3. Expand and simplify
$$(x-3)(x+2)^2$$

7. Write $(\sqrt{y} + \sqrt{8y})^2$ in the form $a + b\sqrt{2}$.

Given that
$$(\sqrt{y} + \sqrt{8y})^2 = 54 + b\sqrt{2}$$
.
Find values for y and b.

4. Expand and simplify

$$(2-\sqrt{3})(1+\sqrt{3})(1-\sqrt{3})$$

8. Simplify
$$\frac{(x-1)(x+2)}{(x+3)} - \frac{4}{2x+1}$$

Fully factorise the following

1.
$$7x + 28$$

2.
$$14 - 21x$$

3.
$$y^2 - 8y$$

4.
$$3t^4 + 9t^2$$

5.
$$3x^3y - 12xy^2 + 6xy$$

6.
$$8a^3b + 6y^2b - 10b$$

7.
$$6x(x+3) + 5(x+3)$$

8.
$$7y(3-2y)-2(3-2y)$$

(>)

Further Factorising 2

Factorise the following fully:

1.
$$x^2 + 6x - 7$$

2.
$$y^2 + y - 12$$

3.
$$y^2 - 11y + 28$$

4.
$$t^2 + 7t - 18$$

5.
$$k^2 + 9k + 20$$

6.
$$x^2 + x - 56$$

7.
$$p^2 - 25p$$

8.
$$x^2(3x-4)+(4-3x)$$

Try factorising these expressions using the difference of two squares

1.
$$x^2 - 6^2$$

2.
$$y^2 - 144$$

3.
$$x^2 - y^2$$

4.
$$4t^2 - 81$$

5.
$$x^2 - 5$$

Completing the square 2

Write these expressions in the form $(x + a)^2 + b$

1.
$$x^2 + 10x$$

2.
$$x^2 + 10x + 30$$

3.
$$y^2 - 2y$$

4.
$$y^2 - 2y + 3$$

5.
$$x^2 - 8x + 25$$

6.
$$k^2 + 14k - 1$$

7.
$$y^2 + 5y + 6$$

8.
$$t^2 + 6t + 9$$

⊘

Rearranging 2

- 1. Make x the subject of x f = y + b
- 2. Make y the subject $ty x^2 = b$
- 3. Make c the subject $ac + d = m^2$
- 4. Make a the subject x(a e) = d

- 5. Make y the subject $b(y b) = b^2$
- 6. To find velocity, v, we use the formula $v^2 = u^2 2as$

Rearrange to find s

- 7. The area of a sector of a circle is given by $A = \frac{\theta \pi r^2}{360}$ Express θ in terms of A, π and r
- 8. Make x the subject m(y x) = t

Rearranging and Functions

Original function

$$f(x) = 3x + 2$$

Inverse function

$$f^{-1}(x) = \frac{x-2}{3}$$

Find the inverse of each of these functions.

$$f(x) = 3x - 5$$

$$f(x) = 4x + 7$$

$$f(x) = \frac{x}{2} + 1$$

$$f(x) = \frac{x+2}{3}$$

5.
$$f(x) = \frac{2}{3}x + 3$$

$$6. f(x) = 3 - 2x$$

Further Factorising 2

- 1. Make y the subject of xy + 6 = 7 - ky
- 2. Find an expression for the area of a rectangle with length, (y - x) and width, (x-2)
- 3. Rewrite your expression in Q2 to have y expressed in terms of A and x
- 4. Make y the subject of $\frac{4}{y} + 1 = 2x$

5. Displacement can be expressed as $i. \quad s = ut + \frac{1}{2}at^2$

Express a in terms of s, u and t

- 6. Make y the subject of $\sqrt{by^2 x} = D$
- 7. The area of a trapezium has formula i. $A = \frac{1}{2} \left(\frac{a+b}{h} \right)$ Express h in terms of A, a and b
- 8. Make t the subject b(t + a) = x(t + b)

Solving with Quadratics 2

Solve the following

1.
$$x^2 - 4x - 12 = 0$$

2.
$$x^2 - x = 6$$

3.
$$2x^2 - 11x + 12 = 0$$

4.
$$6x^2 + x - 12 = 0$$

5.
$$3 + 2x - x^2 = 0$$

6.
$$x^2 - 4x - 1 = 0$$

7.
$$\frac{8}{x+2} - \frac{14}{x-3} = 9$$

8. The area of this rectangle is $30m^2$

$$3x + 4$$

- a) Show that $6x^2 + 5x 34 = 0$
- b) Find any possible values for x

SOLUTIONS

Fractions 1

2.
$$\frac{1}{3}$$

1. 1001 2.
$$\frac{1}{3}$$
 3. $\frac{11x}{12}$ 4. $\frac{1}{2}$

4.
$$\frac{1}{2}$$

5.
$$\frac{16}{7}$$

5.
$$\frac{16}{7}$$
 6. $\frac{1}{2} + \frac{1}{2}$ and $\frac{1}{2} \div \frac{1}{2}$ 7. No, $31\frac{1}{5} > 30$ 8. $\frac{8a-3b}{12}$

7. No,
$$31\frac{1}{r} > 30$$

8.
$$\frac{8a-3b}{12}$$

Indices 2

1.
$$t^9$$
 2. 8^5 3. 3^8 4. $\frac{1}{5}$

5. 2 6. 1 7.
$$\frac{1}{81}$$
 8. $\frac{9}{4}$

8.
$$\frac{9}{4}$$

Surds 2

1.
$$4\sqrt{d}$$

1.
$$4\sqrt{d}$$
 2. $8\sqrt{3b}$ 3. 80 4. $5\sqrt{3}$

6.
$$\frac{2\sqrt{10}}{5}$$

5. 1 6.
$$\frac{2\sqrt{10}}{5}$$
 7. $\sqrt{2}$ 8. 30 cm^2

Expanding 2

1.
$$2y^2 - 3y$$

3. 11x - 5

7.
$$3a - 4t - 2$$

2.
$$6x^3y - 4x^5$$

4.
$$6\sqrt{2} - 8$$

5.
$$y(y + 4) \& y^2 + 4y$$
 6. $6(2x + 8) \text{ or } (12x + 48) \text{ cm}^2$

8.
$$\frac{7a^2-52a}{24}$$

Expanding 2

1.
$$2x^2 - x - 6$$

1.
$$2x^2 - x - 6$$
 2. $3x^2 + 13x + 12$ 3. $2x^2 + 6x + 45$

3.
$$2x^2 + 6x + 45$$

4.
$$7 - 4\sqrt{3}$$

5.
$$\frac{x^2+2x-9}{x(x+3)}$$

6.
$$x^6 - 49$$

7.
$$12x^3 + 14x^2 - 5x - 6$$
 8. $\frac{5x^2 - 6x + 4}{3x(x+2)}$

8.
$$\frac{5x^2-6x+4}{3x(x+2)}$$

Summary and review

1.
$$x^2 + \frac{1}{9}x - \frac{2}{27}$$

2.
$$x^3 + 6x^2 + 11x + 6$$

3.
$$x^3 + x^2 - 8x - 12$$

4.
$$2\sqrt{3}-4$$

5.
$$x^3 - 12x^2 + 48x - 64$$

6.
$$x^5 + x^4 - 4x - 4$$

7.
$$y = 6$$
 $b = 24$

8.
$$\frac{2x^3+3x^2-7x-14}{(x+3)(2x+1)}$$

Factorising 2

1.
$$7(x+4)$$

2.
$$7(2-3x)$$

3.
$$v(v - 8)$$

1.
$$7(x+4)$$
 2. $7(2-3x)$ 3. $y(y-8)$ 4. $3t^2(t^2+3)$

5.
$$3xy(x^2-4y-2)$$
 6. $2b(4a^3+3y^2-5)$ 7. $(x+3)(6x+5)$ 8. $(3-2y)(7y-2)$

6.
$$2b(4a^3 + 3v^2 - 5)$$

7.
$$(x+3)(6x+5)$$

8.
$$(3-2v)(7v-2)$$

Further Factorising 2

1.
$$(x+7)(x-1)$$

1.
$$(x+7)(x-1)$$
 2. $(y+4)(y-3)$ 3. $(y-7)(y-4)$ 4. $(t+9)(t-2)$

3.
$$(v-7)(v-4)$$

4.
$$(t+9)(t-2)$$

5.
$$(k+5)(k+4)$$

6.
$$(x+8)(x-7)$$

7.
$$p(p-25)$$

5.
$$(k+5)(k+4)$$
 6. $(x+8)(x-7)$ 7. $p(p-25)$ 8. $(3x-4)(x^2-1)$

Difference of Two Squares

1.
$$(x-6)(x+6)$$

1.
$$(x-6)(x+6)$$
 2. $(y+12)(y-12)$ 3. $(x+y)(x-y)$

3.
$$(x + y)(x - y)$$

4.
$$(2t-9)(2t+9)$$

4.
$$(2t-9)(2t+9)$$
 5. $(x+\sqrt{5})(x-\sqrt{5})$

Completing the square 2

1.
$$(x+5)^2-25$$

2.
$$(x+5)^2+5$$

3.
$$(y-1)^2-1$$

1.
$$(x+5)^2-25$$
 2. $(x+5)^2+5$ 3. $(y-1)^2-1$ 4. $(y-1)^2+2$

5.
$$(x-4)^2+9$$

5.
$$(x-4)^2+9$$
 6. $(k+7)^2-50$ 7. $(y+\frac{5}{2})^2-\frac{1}{4}$ 8. $(t+3)^2$

7.
$$\left(y + \frac{5}{2}\right)^2 - \frac{1}{4}$$

8.
$$(t+3)^2$$

Rearranging 2

$$1. \quad x = y + b + j$$

1.
$$x = y + b + f$$
 2. $y = \frac{(b+x^2)}{t}$ 3. $c = \frac{m^2 - d}{a}$

3.
$$c = \frac{m^2 - d}{a}$$

4.
$$a = \frac{d}{x} + e$$

5.
$$y = 2b$$

6.
$$s = \frac{v^2 - u^2}{2a}$$
 7. $\theta = \frac{360A}{\pi r^2}$

7.
$$\theta = \frac{360A}{\pi r^2}$$

8.
$$x = y - \frac{t}{m}$$

Please note that there may be alternative correct expressions - check with your teacher

Rearranging Functions -

1.
$$f^{-1}(x) = \frac{x+5}{3}$$

2.
$$f^{-1}(x) = \frac{x-7}{4}$$

3.
$$f^{-1}(x) = 2(x-1)$$

4.
$$f^{-1}(x) = 3x - 2$$

$$5.f^{-1}(x) = \frac{3(x-3)}{2}$$

$$6.f^{-1}(x) = \frac{3-x}{2}$$

Rearranging Factorising 2

Roal ranging ractorioning 2			
$1. y = \frac{1}{x+k}$	$2. \ \ A = xy - x^2 - 2y + 2x$	3. $y = \frac{2x - x^2 - A}{(2 - x)}$	4. $y = \frac{4}{2x-1}$
$5. \ \frac{2s-2ut}{t^2}$	$6. y = \pm \sqrt{\frac{D^2 + x}{b}}$	$7. \ h = \frac{a+b}{2A}$	$8. t = \frac{xb - ba}{b - x}$

Solving Quadratics 2

1
$$x = 6 \text{ or } x = -2$$

5
$$x = 3 \text{ or } x = -1$$

$$2 x = 3 or x = -2$$

$$6 x = 2 \pm \sqrt{5}$$

3
$$x = \frac{3}{2} \text{ or } x = 4$$

$$7 x = -\frac{1}{3} \text{ or } x = \frac{2}{3}$$

4
$$x = -\frac{3}{2} \text{ or } x = \frac{4}{3}$$

8
$$x = 2 \text{ (Note } x \neq -\frac{17}{6})$$