
Computer Systems

A computer system has both hardware and software.

Hardware are the physical components that make up a device or
computer system. These include both the internal components (eg
motherboard, CPU, RAM) and peripheral devices such as printers.

Software is the computer code, programs and algorithms that give
instructions to the hardware to make it perform the desired task.
Without the software the hardware will not get any instructions and
it will not do anything.

Software Classification

Software is split into two types: application software and system
software

Application software is a program designed to perform a specific
task that the user interacts directly with (eg spreadsheets, web
browser and word processor, disk defragmentation).

System software is concerned with the running of the computer. Its
purpose is the control the computer hardware and manage the
application software. (eg operating system, antivirus, backup tools,
firewall)

The operating system (OS) is the most important piece of system
software. The OS handles management of the processor, memory,
input/output devices, applications and security.

• Application management - Application software does not
need to concern itself with interaction and complexities of
managing the hardware because this is dealt with by the
operating system. Application software runs on top of
operating system which is an intermediary and takes care of
interaction with the hardware.

• Processor resources – Allows multiple applications to be run

simultaneously by manages the processing time between
applications and cores and switching processing between
applications very quickly. Multiple applications will access
the processor resources via a schedule that alternates
process between applications. High priority applications will
have more CPU time, but it means that lower priority
applications will take longer to run.

• Memory management – Distributes memory resources

between programs and manages transfer of data and
instruction code in and out of memory. Ensures that each
application does not use excessive memory.

• Security – Tools such as anti-virus software and firewalls help
protect the computer from attack. In addition requirement
for passwords and control of access rights
.

• Input / Output devices – OS controls interaction with input
(eg keyboard) outputs (eg. Monitor) and storage (eg hard
disk) using hardware drivers. Allows users to save files to the
hard disk and print documents for instance.

Cloud Computing

• Can store data and files on a server elsewhere that can be

accesses via the internet.
• Can use applications over the internet
• Can sync files so that all your devices see the same files
• Can share documents with others
• Can access your files anywhere if you have a good internet

connection

Advantages of cloud computing

• Only pay for storage that you use
• Data and files available from anywhere in the world where

there is an internet connection
• Data automatically backed up

Disadvantages of cloud computing

• Need a reliable network connection
• Files are hosted elsewhere so a security concern
• the most recent versions of software is often not available
• Transfer of data over the internet will slow down

performance.

Advantages of local storage

• Files can be accessed even when there is no internet
connection

• More secure as files to not need to be transferred over the
network and the user has more control

Disadvantages of local storage

• Users need to organise their backup solutions
• Not so easy to share documents
• Can only access the files locally

Memory

Volatile memory (main memory) When the computer is turned off
the contents of volatile memory is lost. When there is no power,
volatile memory is erased.

Non-volatile memory (secondary storage) Even when here is no
power, the data remain unchanged and can be accessed once again
once power has been resumed. This allows you to store files for he
long term.

ROM (Read Only Memory) Data can only be read from the device,
and cannot the memory cannot be edited or deleted. ROM is only
used for situations where you can be sure that updates will not be
needed. The computer’s BIOS (basic input output system) which
controls the boot up sequence is stored on a ROM chip.

RAM (Random Access Memory) - When applications are executed
they are loaded into RAM first. RAM is volatile.

Embedded Systems

An embedded system is a computer system that is designed for a
specific function, in contrast to a general-purpose computer that can
carry out many tasks. Embedded systems typically have a minimal
or no user interface. Thus, they can be optimised for size and
power consumption, for instance. Examples of embedded systems
include digital watches, MP3 players, washing machines, cars and
mobile phones.

Secondary Storage

Secondary storage is necessary for saving files long and software
including the operating system. Even when the computer is turned
off, the data remain unchanged, and can be accessed again once the
power supply has been turned on.

Magnetic Hard Disk

• Tracks on the disk platters contain tiny magnets, each holding
1 bit of data.

• The polarity (negative or positive) of the magnets determines
whether the bits are 0 or 1.

• The write head modifies the polarity of the magnet as
appropriate.

• The read head identifies whether each magnet is negative or
positive.

• The tracks are laid out as a series of concentric rings.

Advantages
• Cheap form of storage

Disadvantages
• Less reliable because it contains moving parts that can break
• Electromagnetic surge can corrupt the data held
• Slow speed of read/write access

Optical Disks

• Tracks on the disk contain pits and lands.
• The track is a spiral.
• A laser is emitted and the laser light is reflected when it hits

the lands, but is scattered when it hits the pits.
• Depending on whether the light is scattered light is encoded

as a binary value of 0 and reflected light is encoded as a 1.
• The sensor is able to detect light reflected, but not scattered.
• Example: Blue-Ray (25 Gb) DVD (4.7 Gb), CD (700 Mb).

Advantages

• Can transfer easily between computers

Disadvantages

• Can scratch easily
• Not much storage compared with other methods.
• No unlimited writes to the hard disk

Solid state Drive

• Use millions of switches called floating gate transistors on
microchips to store data.

• Electrons are stored in gates and this is encoded as 0 when
there is an electron present and encoded a 1 when there is
no electron present.

• The electros remain trapped even when there is no flow of
electricity.

• Contain no moving parts and are therefore more robust that
optical and magnetic storage.

Advantages

• Much faster that other means of storage
• More reliable than other means if you are only reading
• Quiet

Disadvantages
• More expensive per volume of storage
• Reliability might be an issue if you do a lot of writing

Boolean Logic

NOT gate - The output is the opposite of the input

𝑄𝑄 = 𝐴̅𝐴
𝑄𝑄 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝐴𝐴

NOT truth table

Input Output
0 1
1 0

AND gate - has two inputs and will have a true output if the two
inputs are true otherwise the output will be false

𝑄𝑄 = 𝐴𝐴. 𝐵𝐵
𝑄𝑄 = 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵

AND truth table

Input - A Input - B Output
0 0 0
1 0 0
0 1 0
1 1 1

OR gate - has two inputs and will have a true output if either or both
the inputs are true

𝑄𝑄 = 𝐴𝐴 + 𝐵𝐵
𝑄𝑄 = 𝐴𝐴 𝑂𝑂𝑂𝑂 𝐵𝐵

OR truth table

Input - A Input - B Output
0 0 0
1 0 1
0 1 1
1 1 1

XOR gate - has two inputs and will have a true output if either the inputs are true
but not both

𝑄𝑄 = 𝐴𝐴⊕ 𝐵𝐵
𝑄𝑄 = 𝐴𝐴 𝑋𝑋𝑋𝑋𝑋𝑋 𝐵𝐵

OR truth table
Input A Input B Output
0 0 0
1 0 1
0 1 1
1 1 0

Boolean Expression Operators

Operator Example
AND . Q = A AND B Q = A . B
OR + Q = A OR B Q = A + B
NOT ̅ Q = NOT A 𝑄𝑄 = 𝐴̅𝐴
XOR ⊕ Q = A XOR B 𝑄𝑄 = 𝐴𝐴 ⊕ 𝐵𝐵

Converting a truth table to a logic circuit

There is a general approach to converting a truth table into a logic circuit.

We consider only the lines with an output of 1.
We take in the input of each and then AND.

We then OR between each statement such that
 (NOT A AND B) OR (A AND NOT B). We can then draw the logic circuit.

Worked example: What is the logic circuit for the following truth table

Input - A Input - B Output
0 0 0
1 0 1
0 1 0
1 1 1

(A AND NOT B) OR (A AND A)

System Architecture

CPU (Computer Processing Unit) or processor Fetches, decodes and
executes instructions and performs logical and arithmetic
operations.

Von Neumann architecture is the stored program concept, where
program instructions and the data to be processed can be stored in
the same memory.

Components of a CPU

Bus Wires through which data and instructions are transferred
between computer components

Clock keeps all the CPU components synchronised

 Arithmetic Logic Unit (ALU) Every operation takes place here. This is
where the arithmetic (eg adding two binary numbers) and logic
operations (eg checking to see if one number is bigger than another)
take place.

Control Unit Decode the machine code instruction so that the ALU
knows what to do with the instruction. Controls and monitors data
transfer between different input and output hardware components

Factors affecting CPU performance

Clock speed is the number of cycles that a processor carries out per
second. Each cycle of the CPU allows a single action (instruction) to
be carried out. The greater the clock speed, the greater the number
of operations and the faster the computer will run.

Number of processor cores A core is CPU in its own right. Nowadays
most CPUs have multiple cores. Having multiple cores allows
instructions to be carried out concurrently (at the same time),
whereas a single core will only allow carry out instructions in serial
(one at a time).

Latency Delay in transfer of data between components

Cache size Cache is a volatile memory store on the processor. Cache
is much faster but smaller that RAM. Frequently used data and
instructions within an application can be stored in cache instead of
fetching from RAM which is quite slow. The bigger the cache the
greater the volume of data and instructions that can be stored
thereby reducing latency and improving performance of the CPU.

Cache type There are three levels of cache. Cache Level is a trade off
between size and speed

• Level 1 Cache closest to the CPU and is the fastest cache
(lowest latency), but does not have much capacity

• Level 2 Cache – is slower and further away from the CPU than
L1 cache so latency is greater, but has more storage capacity.

• Level 3 Cache is the slower than L1 and L2 cache; much faster
than RAM; has greater capacity than L1 and L2 cache.

Fetch execute cycle

1. Instructions are loaded into memory
2. Processor fetches the instruction from the main memory
3. Instruction is decoded so the CPU knows what to do with the

instruction
4. Processor then executes the instruction
5. Result of the instruction can be stored in memory
6. Next instruction is then fetched from main memory and the

cycle repeats itself.

Classification of programming languages

High level programming languages are closer to human language
and is therefore easier to understand. A translator is used to
convert the instructions into code that the computer understand.
High level languages allow programs to be written that is
independent of the type of computer. High level programming
languages allow code to be written that is independent of the type
of computer system. It is up to the compiler to translate the code
into the right machine code for a particular code. There is a huge
variety of high level programming languages, and the choice
depends on the application.

Low level programming languages refer to machine code and
assembly language. The Low level refers to low level of abstraction.
The low level language is close to the language understood by the
computer where operations map to the instruction in the processor
instruction set. However it is difficult for humans to understand.
Low level languages are appropriate for developing new operating
systems, embedded systems and hardware device drivers

Machine code is expressed in binary values 0 and 1. This is the
language that computers understand. All codes whether assembler
or high level programming languages need to be translated into
machine code. Machine code is specific to a processor.

Machine code instructions are made up of two parts the operator
and the operand. The processor decodes the operator to identify the
task that is to be carried out (eg. Add, load). The operand is the
value or memory address that that instruction is to be operated on

Machine code instruction
Operator Operand
0011 10010100

Assembly language provides basic computer instructions for
programs to run. There is a one to one relationship between
machine code and assembly code instructions. One assembly
language instruction maps to one machine code instruction, thus the
structure of assembly language and machine code is the same, but
where machine codes uses 0 and 1 which are very difficult for
programmer to understand, assembly language uses mnemonics
which is easier for the programmer.

Assembly language sample Instruction set
LOAD #23 # Load from RAM to processor
MOV a 23 # Transfer in number 23 into the variable a
ADD 2 3 # Add 2 values
STORE # store data in RAM

Each type of processor has its own instruction set and therefore its
own assembly language and machine code. So Assembly code
written for one type of processor will not run on another.

Low level languages versus high level languages

 Advantages Disadvantages
Low
level

Produce code that is faster
and better optimised than
high level languages.

Appropriate for
developing new operating
systems, embedded
systems and hardware
device drivers

Difficult to understand and
modify

Assembly code is written for
a specific processor
architecture, and so is not
portable to other computer
architectures

High
level

High level programming
languages allow code to
be written that is more
portable. Thus code can
be run on different of the
types of computer system
with different processor
architecture.

Easier to understand

Easier to modify

Needs a translator

run slower because of the
layers of abstraction and
there is inefficiency in
translator.

Program translators allow programs to be translated into
machine code so the than programs can be run on a computer.

Interpreter converts high level languages into machine code one
instruction at a time on-the-fly while the program is running. Each
instruction is converted to machine code once the previous
instruction has been executed. Interpreters are good for debugging
code because the program stops as soon as the error has been
found. However running code this way is much slower running
compiled code. The machine code is not saved.

Compiler A program that converts high level languages into machine
code before the program is run. A compiler saves the machine code,
so the source code is no longer needed A compiler allows a program
to be run faster than interpreted code. Software is normally
distributed as compiled machine code. For proprietary software this
is good because other people cannot copy the code and use it for
their own applications.

Assembler Assembler converts assembly language instructions into
machine code.

