
Databases

A database is a collection of data stored in an organised and logical way. Data are
stored in tables and tables are made up of records (rows) which can have 1 more
attributes (columns). An example of a table is given here:

Student ID First Name Surname DateOfBirth FormTutor
712 Bart Simpson 1/4/10 Principal Skinner
423 Lisa Simpson 20/5/12 Mrs Krabapple
917 Ralph Wiggum 16/6/10 Mrs Krabapple
124 Nelson Muntz 14/9/09 Principal Skinner

ENTITY
Each table contains information about an entity. A database entity is an object,
person, item or thing about which you want the data stored. Examples of database
entities are:

Person entity Object entity Item entity
 Customer
 Employee
 Student
 Teacher

 Book
 Car
 House

 Sale transaction
 Appointment

DATA
Data are atomised facts, values and observations that are stored in a database.
That is they cannot be broken up further. Data can be stored as any data type.

Field Student
ID

First
Name

Height Date of
Birth

Had Flu
Vaccination?

Date Type Integer/
number

Text/
string

Real/ float date Boolean – Yes/no
or true/false

Record 1 712 Bart 1.35 1/4/2010 True
Record 1 423 Lisa 1.16 20/5/2012 True
Record 1 917 Ralph 1.05 16/6/2010 False

DATABASE INDEX
A database index allows for quick speed of retrieval of data from searches of
tables. The index is a separate file that has a sorted column of values that link to
records in a table.

RECORD
A record is a single row in a table that can have data stored as 1 or more fields
(columns). A record needs to be uniquely identifiable and needs an entity identifier
which in this example is Student ID. A table contains multiple records. The
following example contains 4 records.

 StudentID FirstName Surname DateOfBirth FormTutor

Re
co

rd
s

712 Bart Simpson 1/4/10 Principal Skinner

423 Lisa Simpson 20/5/12 Mrs Krabapple

917 Ralph Wiggum 16/6/10 Mrs Krabapple

124 Nelson Muntz 14/9/09 Principal Skinner

The Student ID field contains unique values for each record; this means that each
value is different. The Surname field does not contain unique values. For instance,
Simpson appears twice.

FIELD
Fields / attributes form the columns of the database table and refer to the
characteristics of a record. For instance, the fields of the table below include:

 Student ID
 First name
 Surname
 Date of Birth
 Form tutor

Fields
Student
ID

First
Name

Surname Date of
Birth

Form Tutor

712 Bart Simpson 1/4/10 Principal Skinner
423 Lisa Simpson 20/5/12 Mrs Krabapple
917 Ralph Wiggum 16/6/10 Mrs Krabapple
124 Nelson Muntz 14/9/09 Principal Skinner

DATA REDUNDANCY
Data redundancy occurs when the same data are stored in multiple places and so
we have repeating data. As a result more space is needed to store the same values
several times which is not efficient. In the table below notice how the Author
Name fields are repeated.

BookID Title FirstName Surname

1 Fantastic Beasts and Where to Find Them J.K. Rowling
2 Harry Potter and the Chamber of Secrets J.K. Rowling

3 Harry Potter and Order of the Phoenix J.K. Rowling

4 The BFG Roald Dahl
5 Going Solo Roald Dahl

6 Danny Champion of the World Roald Dahl

7 War Horse Michael Morpurgo
8 Private Peaceful Michael Morpurgo

DATA INCONSISTENCY
Data inconsistency occurs when data pertaining to the same object are in fact
stored in a different format. For instance, JK. Rowling and Joanne Rowling refer to
the same person, but the database may record these as two separate authors.

BookID Title FirstName Surname

1 Fantastic Beasts and Where to Find Them JK Rowling
2 Harry Potter and the Chamber of Secrets Joanne Rowling
3 Harry Potter and Order of the Phoenix Joanne Rowling
4 The BFG Roald Dahl
5 Going Solo Roald Dahl
6 Danny Champion of the World Roald Dahl
7 War Horse Michael Morpurgo
8 Private Peaceful Michael Morpurgo

RELATIONAL DATABASES
Complex databases can be made up of multiple tables linked together by shared
values called a key. These relational databases make it easier to search and find
information that you want. Relational databases reduce the amount of duplication
(redundancy) of data and reduces inconsistencies in the data.

PRIMARY KEY
All tables have a field that is the primary key and uniquely identifies each record.
This is also known as entity identifier

FOREIGN KEY
These are primary keys that are held as fields in other tables to cross reference
tables. They allow tables to be linked together.

For instance, in a book database with two tables including Author table and Book
table, AuthorID is primary key in Author table and is used to cross-reference with
the AuthorID in the book table which is the foreign key so the two tables can be
linked.

STRUCTURED QUERY LANGUAGE
We will use this book table in the examples that follow.

SELECT
To retrieve data from the table

To retrieve all records data from the table we can use the SELECT statement with
the wild card operator *.

SELECT *
FROM tableName

EXAMLPE
SELECT *
FROM book

RETRIEVED DATA
1 Fantastic Beasts .. JK Rowling 2001 Bloomsbury Fantasy
2 ..Chamber of Secrets JK Rowling 1998 Bloomsbury Fantasy
3 .. Order of the Phoenix JK Rowling 2003 Bloomsbury Fantasy
4 The BFG Roald Dahl 1982 Penguin Fantasy
5 Going Solo Roald Dahl 1986 Jonathan Cape Autobiography
6 Danny Champion .. Roald Dahl 1975 Jonathan Cape Children
7 War Horse Michael Morpurgo 1982 Kaye & Ward Historical fiction
8 Private Peaceful Michael Morpurgo 2003 HarperCollins Historical fiction

We can also choose the fields that we wish to retrieve:

SELECT field1, field2, …
FROM tableName

EXAMPLE
SELECT Author, Title
FROM book

RETRIEVED DATA

Fantastic Beasts and Where to Find Them JK Rowling

Harry Potter and the Chamber of Secrets JK Rowling

Harry Potter and Order of the Phoenix JK Rowling

The BFG Roald Dahl

Going Solo Roald Dahl

Danny Champion of the World Roald Dahl

War Horse Michael Morpurgo

Private Peaceful Michael Morpurgo

We can sort the output of our SELECT statement by using the ORDER BY clause.
ASC and DESC refer to sorting ascending and descending alphabetically or
numerically of a specified field.

ORDER BY fieldname ASC|DESC

EXAMPLE SORT ASCENDING
SELECT Author, Title
FROM book
ORDER BY Title ASC

Danny Champion of the World Roald Dahl
Fantastic Beasts and Where to Find Them JK Rowling
Going Solo Roald Dahl
Harry Potter and the Chamber of Secrets JK Rowling
Harry Potter and Order of the Phoenix JK Rowling
Private Peaceful Michael Morpurgo
The BFG Roald Dahl
War Horse Michael Morpurgo

EXAMPLE SORT DESCENDING
SELECT Author, Title
FROM book
ORDER BY Title DESC

War Horse Michael Morpurgo
The BFG Roald Dahl
Private Peaceful Michael Morpurgo
Harry Potter and Order of the Phoenix JK Rowling
Harry Potter and the Chamber of Secrets JK Rowling
Going Solo Roald Dahl
Fantastic Beasts and Where to Find Them JK Rowling
Danny Champion of the World Roald Dahl

WHERE CLAUSE
We can filter our selection using the WHERE clause

WHERE fieldname operator value

Operator Description
= Value equal to
!= Value not equal to
< Value less than
> Value greater than
<= Value less than or equal to
>= Value greater than or equal to

SELECT USING WHERE CLAUSE

EXAMPLE 1 – SELECT BOOKS WRITTEN SINCE 2000
SELECT Title, Author, yearPublished
FROM book
WHERE YearPublished > 2000

Fantastic Beasts and Where to Find Them JK Rowling 2001
Harry Potter and Order of the Phoenix JK Rowling 2003
Private Peaceful Michael Morpurgo 2003

EXAMPLE 2 – SELECT BOOKS WRITTEN BY MICHAEL MORPURGO
SELECT Title, Author
FROM book
WHERE Author = “Michael Morpurgo”

Notice how the author name is in speech marks because it is a string datatype.

War Horse Michael Morpurgo
Private Peaceful Michael Morpurgo

EXAMPLE 3 – SELECT BY DATE
WHERE Date < #1/1/2010#
For data type date you need to use #. Eg

BOOLEAN OPERATORS
We can use Boolean and relational operators with the WHERE clause if we have
multiple conditions that need to be met.

Operator Description
OR Allows us to combine multiple conditions. Any of the conditions

can be true for the overall expression to return true
AND Allows us to combine multiple conditions. All conditions need to be

true for the overall expression to return true
NOT Reverses the value of a condition. If it is true it will be false and vice

versa

EXAMPLE – SELECT ALL BOOKS WRITTEN BY MICHAEL MORPURGO SINCE 2016
SELECT Title, Author FROM book
WHERE Author=“Michael Morpurgo”
AND YearPublished > 2000

Private Peaceful Michael Morpurgo

UPDATE - TO UPDATE RECORDS IN A DATABASE
To make changes to a record that is already in a table we can use the UPDATE
statement.

EXAMPLE 1: Update the book table to change the genre of all fields to Children
UPDATE book
SET Genre=“Children”

EXAMPLE 2: Update the book table to change the author name from JK Rowling to
Joanne Rowling.
UPDATE book
SET Author=“Joanne Rowling”
WHERE Author=“JK Rowling”

Book
ID

Title Author Year
Published

Publisher Genre

1 Fantastic Beasts . Joanne Rowling 2001 Bloomsbury Children
2 Harry Potter .. Joanne Rowling 1998 Bloomsbury Children

3 Harry Potter .. Joanne Rowling 2003 Bloomsbury Children

4 The BFG Roald Dahl 1982 Penguin Children
5 Going Solo Roald Dahl 1986 Jonathan Cape Children

6 Danny . Roald Dahl 1975 Jonathan Cape Children

7 War Horse Michael Morpurgo 1982 Kaye & Ward Children
8 Private Peaceful Michael Morpurgo 2003 HarperCollins Children

INSERT INTO - ADDING NEW RECORDS
INSERT INTO is a commonly used command in SQL for adding new records to
database tables. To insert all attributes for a table we can use:

INSERT INTO table
VALUES(value1, value2,…)

EXAMPLE
INSERT INTO book
VALUES (‘Boy’, ‘Roald Dahl’, 1984, ‘Penguin’,
‘Autobiography’)

Sometimes we do not enter data into every field. Instead we can explicitly state
which fields we would like to add the data to.

INSERT INTO table (field1, field2,…)
VALUES(value1, value2,…)

The values correspond to the fields in the table i.e.:
 Field 1: Book ID
 Field 2: Title
 Field 3: Author
 Field 4: YearPublished
 Field 5: Publisher
 Field 6: Genre

EXAMPLE
INSERT INTO book (Title, Author, YearPublished,
Publisher, Genre) VALUES (‘Boy’, ‘Roald Dahl’, 1984,
‘Penguin’, ‘Autobiography’)

DELETING RECORDS
To delete a record we specify which record(s) from which table we wish to remove.

DELETE FROM table WHERE condition

EXAMPLES
Remove all books
DELETE FROM book
DELETE * FROM book

The WHERE clause is used to filter records so that we do not apply a statement to a
whole table.

Remove all books written by JK Rowling:

DELETE FROM book WHERE Author=‘JK Rowling’

Remove all books written by Michael Morpurgo and written before 2000

DELETE FROM book WHERE Author=‘Michael Morpurgo’ AND
YearPublished < 2000

SELECT ATTRIBUTES FROM MULTIPLE TABLES
So far we have looked at a database made up of a single table. databases can be
made up of multiple tables. We can link tables together using primary keys and
foreign keys. We can use SQL statements to select data from multiple tables. When
selecting the data from multiple tables we need to specify the name of the table
from which each attribute we are wishing to retrieve.

We will use the following database table as an example case study.

We need to specify that we only wish to select the records where the primary key
and foreign key match.

EXAMPLES
Retrieve data book title and author surname

SELECT book.Title, author.Surname
FROM author, book
WHERE author.AuthorID=book.AuthorID

Fantastic Beasts and Where to Find Them JK Rowling
Harry Potter and the Chamber of Secrets JK Rowling
Harry Potter and Order of the Phoenix JK Rowling
The BFG Roald Dahl
Going Solo Roald Dahl
Danny Champion of the World Roald Dahl
War Horse Michael Morpurgo
Private Peaceful Michael Morpurgo

Retrieve book title and author surname where genre is fantasy

SELECT book.title, author.surname
FROM author, book

WHERE author.AuthorID=book.AuthorID
AND book.Genre=“Fantasy”

Fantastic Beasts and Where to Find Them JK Rowling
Harry Potter and the Chamber of Secrets JK Rowling
Harry Potter and Order of the Phoenix JK Rowling
The BFG Roald Dahl

Retrieve book title and author surname where genre is fantasy and sort in
descending order Title

SELECT book.title, author.surname
FROM author, book
WHERE author.AuthorID=book.AuthorID
AND book.Genre=“Fantasy”
ORDER BY title DESC

The BFG Roald Dahl
Harry Potter and Order of the Phoenix JK Rowling
Harry Potter and the Chamber of Secrets JK Rowling
Fantastic Beasts and Where to Find Them JK Rowling

	Field
	Entity
	Data Redundancy
	Data
	Data Inconsistency
	Structured Query Language
	Database Index
	Record
	Select
	Examlpe
	Retrieved data

	Example
	Retrieved data

	Example Sort ascending
	Example Sort Descending
	WHERE Clause
	SELECT using WHERE clause
	EXAMPLE 1 – Select books written since 2000
	Example 3 – Select by date
	Boolean Operators
	EXAMPLE – Select all books written by Michael Morpurgo since 2016
	Update - To update records in a database
	INSERT INTO - Adding new records
	Example
	Example
	Deleting records
	Examples
	Select Attributes from multiple tables

	Relational Databases

