
Data Representation
Number bases

Denary (or decimal) is base-10 and is the number system we are most familiar
with. We have the columns of units, tens, hundreds, thousands and so on. Base-10
means that we have 10 possible values (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) in each column.

Binary is base-2 and has 2 values, 0 and 1. It requires a greater number of digits in
binary to represent a number than denary. This is how data and instructions are
stored in a computer.

To calculate the maximum value for a given number of bits we use 2n-1 where n is
the number of bits. For example for 4 bits we have 24-1 which is 15.

Bits Max value binary Max value denary
1 12 110
2 112 310
3 1112 710
4 11112 1510
5 111112 3110
6 1111112 6310
7 11111112 12710
8 111111112 25510

Hexadecimal is base-16. To make up the 16 values we use the ten denary
numbers in addition to 6 letters (A, B, C, D, E, F).

Denary Hex. Binary Denary Hex. Binary
010 016 00002 810 816 10002
110 116 00012 910 916 10012
210 216 00102 1010 A16 10102
310 316 00112 1110 B16 10112
410 416 01002 1210 C16 11002
510 516 01012 1310 D16 11012
610 616 01102 1410 E16 11102
710 716 01112 1510 F16 11112

Hexadecimal is used a lot in computing because it much easier to read than binary.
There are far fewer characters than binary. So hexadecimal is often used in place
of binary as a shorthand to save space. For instance, the hexadecimal number
7BA3D456 (8 digits) is 01111011101000111101010001010110 (32 digits) in binary
which is hard to read.

Hexadecimal is better than denary at representing binary because hexadecimal is
based on powers of 2.

Converting between number bases

Denary to binary conversion
1. Create a grid:

128 64 32 16 8 4 2 1

2. Add a 1 to the corresponding cell if number contributes to target number and

0 to all the other cells

Worked example: convert 2410 to binary.

128 64 32 16 8 4 2 1
0 0 0 1 1 0 0 0

1610 + 810=2410

The binary value is 110002 (we can ignore the preceding zeros)

Binary to denary conversion

Worked example: Convert 010110012 to denary
1. Create the grid:

128 64 32 16 8 4 2 1
0 1 0 1 1 0 0 1

2. Add up the cells that have a corresponding value of 1:

64 + 1610 + 810 + 1= 8910

Hexadecimal to denary conversion
1) Convert the two hex values separately to denary value
2) Multiply the first value by 16
3) Add the second value

Worked example: Covert A316 to denary
A16 = 1010

316 = 310
(1010 x 1610) +310 = 16310

Denary to hexadecimal conversion
1) Integer divide the denary number by 16
2) Take the modulus 16 of the denary number
3) Convert the two numbers to the corresponding hex values.

Worked example: Convert 18910 to hex
18910 / 1610 = 1110 remainder 1510
1110 = B16
1510 = F16
18910 = BF16

Hexadecimal to binary conversion
1. Find the corresponding 4-bit binary number for the two numbers
2. Concatenate the two binary values to give the final binary value

Example: convert C316 to binary
C16 = 1210 = 11002
316= 310 = 00112
110000112

Binary to hexadecimal conversion
1. Split the binary number into groups of 4 bits: 11102 10102
2. Find the corresponding Hex value for each of the 4-bit groups

Worked example: Convert 111010102 to hexadecimal
11102 |10102
11102 = 1410 = E16
10102 = 1010 = A16
EA16

Units of Information

Unit Symbol Number of bytes
Kilobyte KB 103 (1000)

Megabyte MB 106 (1 million)
Gigabyte GB 109 (1 billion)

Terabyte TB 1012 (1 trillion)

A bit is the fundamental unit of binary numbers. A bit is a binary digit that can be
either 0 or 1.

1 byte = 8 bits
1 nibble = 4 bits

Character Encoding

Character coding schemes allows text to be represented in the computer. One
such coding scheme is ASCII. ASCII uses 7 bits to represent each character which
means that a total of 128 characters can be represented.

Lower case letters 26
Upper case letters 26
Numbers 10
Symbols (e.g. comma, colon) 33
Control characters 33

ASCII encoded values for some characters

A 10000012 6510
B 10000102 6610
a 11000012 9710
b 11000102 9810
“0” 01100002 4810
“1” 01100012 4910

• ASCII has a limited character set (7 bits, 128 characters), but Unicode has 16

bits and allows many more (65K) characters.
• Unicode provides a unique character for different languages and different

platforms.
• It allows us to represent different alphabets for instance Greek, Mandarin,

Japanese, Emojis etc.
• Unicode and ASCII are the same up to 127.

Binary addition
Binary addition rules

02 + 02 = 02
02 + 12 = 12
12 + 02 = 12
12 + 12 = 102 (carry 1)
12 + 12 + 12=112 (carry 1)

Binary Shift

The binary shift operator is used to perform multiplication and division of numbers
by powers of 2

multiply/divide x 16 x 8 x 4 x 2 / 2 / 4 / 8
shift <<4 <<3 <<2 <<1 >>1 >>2 >>3

Example: Apply shift operator to 11012 (1310)

Shift Result denary
<<1 110102 1310 x 210 =2610
<<2 1101002 1310 x 410 =5210
>>1 110 1310 // 210 =610

Note that odd numbers are rounded down to the nearest integer when the right
shift operator is applied.

Example
 1 0 1 0 1 0 0 12
 0 0 0 0 1 0 0 12
+ 0 0 0 1 0 1 0 12
 1 1 0 0 0 1 1 12
 carry 1 1 1 1

Sound

Sample - Measure of the analogue signal at a given point in time

Sample rate - number of samples taken per second and is measured in Hertz.

Sample resolution - number of bits used to represent each sample

The size of sound files can be calculated using:

size of file = length (seconds) x sample rate x sampling resolution

For sound to be stored digitally on a computer it needs to be converted from its
continuous analogue form into a discrete binary values. The steps are:
1. Microphone detects the sound wave and converts it into an electrical

(analogue) signal
2. The analogue signal is sampled at regular intervals
3. The samples are approximated to the nearest integer (quantised)
4. Each integer is encoded in binary with a fixed number of bits

Original analogue signal Sample signal at regular intervals

Integer values give to each sample Encode as binary

Images

Bitmap images are made up from tiny dots called pixels. Each pixel will have a
colour associated with it. An image can then be constructed from many of pixels
which will have different colours arranged in rows and columns.

Total number of pixels in image = width in pixels x height in pixels

Colour depth is the number of bits used to represent each pixel in an image. If we
have a black and white image it has two colours. Each pixel can be represented by
a single pixel because a bit value of 0 is black and 1 is white.

Image and corresponding binary encoding

0111010001111111000101110

To represent more colours we can use more bits. For instance if we have 2-bits
per pixel we can represent 4 colours because we know have 4 binary code
combinations (00, 01, 10 11) where each code represents a different colour

Pixilation occurs when the image is overstretched. In these situations, the image
looses quality and has a blocky and blurred appearance. This arises when the
image is presented at too large a size and there are not enough pixels to
reproduce the details in the image at this larger size.

Calculating the size of a bitmap image

File size in bits = width in pixels x height in pixels x colour depth

File size in bytes = width in pixels x height in pixels x colour depth / 8

Data Compression

The purpose of data compression is to make the files smaller which means that:
• Less time / less bandwidth to transfer data
• Take up less space on the disk

Given that there are 7 bits per ASCII character, the uncompressed size of an ASCII
phrase is:

size = number of characters (including spaces) x 7

Run Length Encoding (RLE) is a compression method where sequences of the
same values are stored in pairs of the value and the number of those values. For
instance, the sequence:
0 0 0 1 1 0 1 1 1 1 0 1 1 1 1
would be represented as:
3 0 2 1 1 0 4 1 1 0 4 1

Huffman coding is a form of compression that allows us to use fewer bits for
higher frequency data. More common letters are represented using fewer bits
than less common letters. For instance, “a” and “e”, which occur in many words
would be represented with fewer bit than “z” which occurs rarely.
This allows for much more effective compression than RLE.

The steps involved in Huffman encoding as are follows:

1. Do frequency table
2. Order table
3. Create the tree
4. Add 1, 0 to the branches
5. Encode letters
6. Encode message

Worked Example: How much smaller is the phrase henry horse encoded using
Huffman encoding compared with its uncompressed size.

Calculate the uncompressed size
In the phrase henry horse there are 11 characters (including the space). Therefore
the uncompressed size is 11 x 7 = 77 bits

Generate ordered frequency table (steps 1 and 2)
letter frequency
e 2
h 2
r 2
<space> 1
o 1

s 1
y 1
n 1

Create the tree and add 1 and 0 to branches (steps 3 and 4)

Encode letters

Letter encoding
e 01
h 00
r 111
<space> 100
o 1011
s 1000
n 1100
y 1101

Encode message
00 01 1100 111 1101 100 00 1011 111 1000 01 = 33 bits

Therefore by using compression we have reduced the size from 77 bits to 33 bits a
saving of 44 bits.

0 2 4 6 8 8 8 8 7 5 3 0 ->

 00000 00010 00100 01000

 01000 01000 01000 00111

 00101 00011 …

