Programming - Python

Comment - Text within the code that is ignored by the computer. A Python
comment is preceeded by a #.

This is an example of a comment

Output - Processed information that is sent out from a computer

Python

print (“Hello World!”)

Hello World!
print (“Hello”,
Hello World!

“World!”)

print (“Hello”+”World!”)

HelloWorld!

print (“Hello\nWorld!”)

Hello

World!

Pseudocode

OUTPUT “Hello World”

Input - Data sent to a computer to be processed

print (“Enter name”)

name=input ()

print (“Hello”,

print (“Enter age”)

age=int (input ())

name)

OUTPUT “Enter name”
name €< USERINPUT
OUTPUT “Hello”, name
OUTPUT “Enter age”

age € USERINPUT

Assignment - The allocation of data values to variables, constants, arrays and
other data structures so that the values can be stored.

Variable — Value that can change during the running of a program. By
convention we use lower case to identify variables (eg a=12)

Constant — Value that remains unchanged for the duration of the program. By
convention we use upper case letters to identify constants. (e.g. PI=3.141)

Data Types

Integer — Whole number

Float (real) number — A

number with a decimal point

Character — A single letter,

symbol or number

String — multiple characters

Boolean — Has two values: true

of false.

Arithmetic Operators

Add

Subtract
Multiply

Divide

power

Integer division

NN d 9

age

height = 1.52

name

V)

NN

** 3
/]2

= 12 age € 12

height € 12

\ar a e \al

= “Bart” name € “Bart”
True a € True
False b € False

- 7+ 2

= 7 -2

= 14 7 E 2

= 4 2

= 2 *x 3

= 7 DIV 2

Modulus (remainder)

7% 2 = 1

7 MOD 2

Relational Operators - Allows the Comparison of values

Less than < < 7<2 -> False
Greater than > < 7 > 2 -> True
Equal to == == T== -> False
Not equal to = # or <> 7!1=2 -> True
Less than or equal to <= < T<=2 -> False
Greater than or equal to >= 2 1>=2 -> True
Boolean Operators

AND and 7 < 2 and 1 < 2 -> False

OR or 7 < 2 o0orl1l<2 -> False

NOT not 'not 7 < 2 -> True

Sequencing represents a set of steps. Each line of code will have some

operation and these operations will be carried out in order line-by-line

Using + operator for adding

a =1

b =2
c=a+b
print (c) -> 3

a « 1
b~ 2

c—a-+b

OUTPUT

Using + operator for concatenation

(¢]

a = ‘Hello ' a « ‘Hello ’
b = ‘“World’ b « “World’
c=a+b c—a+b
print (c) -> Hello World OUTPUT c

Random number

IF ... IF i > 2 THEN if 1 > 2
j € 10 J=10
ENDIF

IF ... ELSE ... IF i > 2 THEN if 1 > 2
j € 10 J=10
ELSE else:
j € 3 J=3
ENDIF

IF ... ELSE IF ... ELSE IF i ==2 THEN if 1 ==2:
3 < 10 J=10
ELSE IF i== elif i==
j € 3 j=3
ELSE else:
j €1 j=1
ENDIF

Iteration Sometimes we wish the code to repeat a set of instructions

WHILE loops are used when the we do not know beforehand the number of
iterations needed and this varies according to some condition.

Start)
x < 10):

(
x = x + 1 v

x =0
while

letx=x+1 J

Random import

integer random.
Choice random.
Random value random.

random
randint (0, 9)

RANDOM_ INT (0, 9)

choice('a’,’'b’,’c’)

random ()

fromOto1l

Selection represents a decision in the code according to some condition. The

condition is met then the block of code is executed otherwise it is not. Often
alternative blocks of code are executed according to some condition.

x=RANDOM_INT ()
IF x < 10 THEN
y=1
ELSE
y=0
ENDIF

Let x = Random

while True: WHILE TRUE
print (“Hello World”) OUTPUT “Hello World”
ENDWHILE
a=0 a € o0
while a<4: WHILE a < 4
print (a) OUTPUT a
a=a+3 a € a + 3
ENDWHILE

FOR loops are used when we know before hand the number of iterations we wish
to make.

FOR a « 0 TO 3
OUTPUT a
ENDFOR

for a in range(3):
print (a)

Nested structures - Use constructs (e.g. WHILE, FOR, IF)inside another.

use a nested FOR loop to
print out a grid

Use a nested while and if
to print out only even
numbers

Lists

Create a list

Access element by index pos
Append item to list

Remove item from list

Remove item from list by
index
Insert item into list

Number of elements in a list
Get index pos of item in list

Concatenating lists

Loop through list

Reverse elements in a list

Order elements in a list

2D lists - A list if lists

for i in range (10):
for i in range (10):

print ("x ",end="")
print ()

i=0

while i<51:
if (i%2==0):
print (i)
i=i+1

shapes=["square","circle"]
shapes|[1l] -> circle
shapes.append (“triangle”)
shapes.remove (“circle”)

shapes.pop (1)

shapes.insert (2, “rectangle”)

len (shapes)

shapes.index (“triangle”)
shapesGroupl [“square”, “circle”]
shapesGroup2=[“triangle”]
shapes=shapesGroupl+shapesGroup?2
for i in range (len (shapes)) :
print (shapes[i])
shapes.reverse ()

shapes.sort ()

Create a 2D list d= [[23, 14, 17], [12, 18, 37],
[l6, 67, 83]]

Another way to a = [23, 14, 17]

create a 2D list b = [12, 18, 37]
c = [16, 67, 83]
d = [a,b,c]

Access element by
index position

Strings

Get length of a string
Character to character code
Character code to character
String to integer

String to float

integer to string

real to string

da[1] (2] -> 37

len (“Hello”)
ord("a") -> 97
chr (101) -> ‘e’
a=int (“12")
a=float (“12.3")
a=str(12)
a=str(12.3)

LEN (“Hello”)
ORD("a")

CHR (101)

a=INT (“12")
a=FLOAT (“12.3")
a=STR(12)
a=STR(12.3)

Concatenation -merge multiple strings

together

a=“hello ”

b="“world”

c=atb

print (c) ->
hello world

Return the position of a character
If there is more than 1 of the same
character the position of the first
character is returned.

Find the character at a specified

position

student = “Hermione"
student.index (‘i'")

student = “Hermione"

print (student[2]) -> r

sub strings - select parts of a string

Example

Output the first two characters
Output the first three characters
Output characters 2-4

Output the last 3 characters

Output a middle set of

characters

student=“Harry Potter”

print (student[0:2]) Ha
print (student[:3]) Har
print (student[2:5]) Rry
print (student[-3:]) Ter
print (student[4:-31]) y Pot

*A negative value is taken from the end of the string.

Subroutines are a way of managing and organising programs in a structured

way. This allows us to break up programs into smaller chunks.

e Can make the code more modular and more easy to read as each function
performs a specific task.

e Functions can be reused within the code without having to write the code

multiple times.

e Procedures are subroutines that do not return values
e Functions are subroutines that have both input and output

Procedure:

No input
parameters or
return

Procedure: One
input
parameter, no
return

Function:

1 input
parameter, and
1 return value

Function:

Two input
parameters, and
1 return value

SUB greeting ()
OUTPUT “hello”
ENDSUB

SUB

greeting (name)
OUTPUT
“Hello”, name
ENDSUB

SUB add (n)
a « 0
FOR a « 0 TO n
a < a +n
ENDFOR
RETURN a
ENDSUB
SUB (numl, num?2)
sum=numl+num?2
return sum

def greeting() :
print (“hello”)

call: greeting()

def greeting (name) :
print (“Hello", name)

greeting (“grey”)

def add(n) :
a=0

for a in range(n+1l):

a=a+n
return a

def add (numl,num2) :
sum=numl-+num2
return sum

greeting (1, 2)

The scope of a variable determines which parts of a program can access and use
that variable.

A global variable is a variable that can be used anywhere in a program. The issue
with global variables is that one part of the code may inadvertently modify the
value because global variables are hard to track.

A local variable is a variable that can only be accessed within a certain block of
code typically within a function. Local variables are not recognized outside a
function unless they are returned. There is no way of modifying or changing the
behavior of a local variable outside its scope.

Global variables need to defined throughout the running of the whole program.
This is an inefficient use of memory resources. Local variables are defined only
when they are needed an so have less demand on memory. Local variables only
exist within the subroutine.

Reading and writing files

Open file Whatever we are doing to a file whether we are reading, writing or
adding to or modifying a file we first need to open it using:

open (filename, access mode)

There are a range of access mode depending on what we want to do to the file, the
principal ones are given below:

Access Mode Description

r Opens a file for reading only

w Opens a file for writing only. Create a new file if one does not
exist. Overwrites file if it already exists.

a Append to the end of a file. Create a new file if one does not
exist.

Reading text files

read — Reads in the whole file into a f=open ("filetxt","r")

single string print (f.read())

f.close ()

readline — Reads in each line one at a ')
time print (f.readline())
print (f.readline())

))

f=open ("file.txt"

print (f.readline (
f.close()

readlines — Reads in the whole file into = f=open ("file.txt","r")
a list print (f.readlines())
f.close ()

Writing text files

Write in single linesata | file=open ("days.txt",'w')

time file.write("Monday\n")
file.write("Tuesday\n")
file.write ("Wednesday\n")

file.close()

say=["How\n”,”are\n”, ”you\n”]
file=open ("say.txt", 'w')
file.writelines (say)
file.close()

Write in a list

Data Validation Routines

Check if an entered string has a
minimum length

Check is a string is empty

Check if data entered lies within
a given range

Authentication Routine

OUTPUT “Enter Username”
username € USERINPUT
OUTPUT “Enter Password”
password € USERINPUT

OUTPUT “Enter String”
s € USERINPUT
IF LEN(S) > 5 THEN
OUTPUT “STRING OK”
ELSE
OUTPUT “TOO SHORT”
ENDIF

OUTPUT “Enter String”
s € USERINPUT

IF LEN(S) == 0 THEN
OUTPUT “EMPTY STRING”

ENDIF

OUTPUT “Enter number” s num

USERINPUT

IF num > 1 AND num < 10
OUTPUT “Within range”

ENDIF

WHILE username != "bart" OR password !="abc"

OUTPUT “Login failed”

OUTPUT “Enter Username”

username € USERINPUT

OUTPUT “Enter Password”

password € USERINPUT

ENDWHILE

OUTPUT “Login Successful”

Debugging

Syntax errors — Errors in the code that mean the program will not even run at all.
Normally this is things like missing brackets, spelling mistakes and other typos.

Runtime errors — Errors during the running of the program. This might be because
the program is writing to a memory location that does not exist for instance. eg.

An array index value that does not exist.

Logical errors - The program runs to termination, but the output is not what is

expected. Often these are arithmetic errors.

Test data

Code needs to be tested with a range of different input data to ensure that it
works as expected under all situations. Data entered need to be checked to ensure

that the input values are:
* within a certain range
. in correct format
* the correct length

* The correct data type (eg float, integer, string)

The program is tested using normal, erroneous or boundary data.

Normal data - Data that we would normally expect to be entered. For example for
the age of secondary school pupils we would expect integer values ranging from 11
to 19.

Erroneous data - Data that are input that are clearly wrong. For instance, if some
entered 40 for the age of a school pupil. The program should identify this as
invalid data but at the same time should be able to handle this sensibly which
returns a sensible message and the program does not crash.

Boundary data - Data that are on the edge of what we might expect. For instance
if someone entered their age as 10, 11, 19 or 20.

