
Programming - Python

Comment – Text within the code that is ignored by the computer. A Python
comment is preceeded by a #.

This is an example of a comment

Output – Processed information that is sent out from a computer

Python Pseudocode

print(“Hello World!”)

Hello World!

print(“Hello”, “World!”)

Hello World!

print(“Hello”+”World!”)

HelloWorld!

print(“Hello\nWorld!”)

Hello

World!

OUTPUT “Hello World”

Input – Data sent to a computer to be processed

print(“Enter name”)

name=input()

print(“Hello”, name)

print(“Enter age”)

age=int(input())

OUTPUT “Enter name”

name  USERINPUT

OUTPUT “Hello”, name

OUTPUT “Enter age”

age  USERINPUT

Assignment - The allocation of data values to variables, constants, arrays and
other data structures so that the values can be stored.

• Variable – Value that can change during the running of a program. By

convention we use lower case to identify variables (eg a=12)
• Constant – Value that remains unchanged for the duration of the program. By

convention we use upper case letters to identify constants. (e.g. PI=3.141)

Data Types

Integer – Whole number age = 12 age  12

Float (real) number – A
number with a decimal point

height = 1.52 height  12

Character – A single letter,
symbol or number

a = ‘a’ a  ‘a’

String – multiple characters name = “Bart” name  “Bart”

Boolean – Has two values: true
of false.

a = True
b = False

a  True
b  False

Arithmetic Operators

Add 7 + 2 = 9 7 + 2

Subtract 7 – 2 = 5 7 - 2

Multiply 7 * 2 = 14 7 * 2

Divide 4 / 2 = 2 4 / 2

power 2 ** 3 = 8 2 ** 3

Integer division 7 // 2 = 3 7 DIV 2

Modulus (remainder) 7 % 2 = 1 7 MOD 2

Relational Operators – Allows the Comparison of values

Less than < < 7<2 -> False

Greater than > < 7 > 2 -> True

Equal to == == 7==2 -> False

Not equal to != ≠ or <> 7!=2 -> True

Less than or equal to <= ≤ 7<=2 -> False

Greater than or equal to >= ≥ 7>=2 -> True

Boolean Operators

AND and 7 < 2 and 1 < 2 -> False
OR or 7 < 2 or 1 < 2 -> False
NOT not not 7 < 2 -> True

Sequencing represents a set of steps. Each line of code will have some
operation and these operations will be carried out in order line-by-line

Using + operator for adding

a = 1
b = 2
c = a + b
print(c) -> 3

a ← 1
b ← 2
c ← a + b
OUTPUT c

Using + operator for concatenation

a = ‘Hello ’
b = ‘World’
c = a + b
print(c) -> Hello World

a ← ‘Hello ’
b ← ‘World’
c ← a + b
OUTPUT c

Random number

Random
integer

import random
random.randint(0,9)

RANDOM_INT(0,9)

Choice random.choice(‘a’,’b’,’c’)

Random value
from 0 to 1

random.random()

Selection represents a decision in the code according to some condition. The
condition is met then the block of code is executed otherwise it is not. Often
alternative blocks of code are executed according to some condition.

x=RANDOM_INT()

IF x < 10 THEN

 y=1

ELSE

 y=0

ENDIF

IF …

IF i > 2 THEN
 j  10
ENDIF

if i > 2:
 j=10

IF … ELSE …

IF i > 2 THEN
 j  10
ELSE
 j  3
ENDIF

if i > 2:
 j=10
else:
 j=3

IF ... ELSE IF … ELSE IF i ==2 THEN
 j  10
ELSE IF i==3
 j  3
ELSE
 j  1
ENDIF

if i ==2:
 j=10
elif i==3:
 j=3
else:
 j=1

Iteration Sometimes we wish the code to repeat a set of instructions

 WHILE loops are used when the we do not know beforehand the number of
iterations needed and this varies according to some condition.

x = 0
while (x < 10):
 x = x + 1

while True:
 print(“Hello World”)

WHILE TRUE
 OUTPUT “Hello World”
ENDWHILE

a=0
while a<4:
 print(a)
 a=a+3

a  0
WHILE a < 4
 OUTPUT a
 a  a + 3
ENDWHILE

FOR loops are used when we know before hand the number of iterations we wish
to make.

for a in range(3):
 print(a)

FOR a ← 0 TO 3
 OUTPUT a
ENDFOR

Nested structures - Use constructs (e.g. WHILE, FOR, IF) inside another.

use a nested FOR loop to
print out a grid

for i in range (10):
 for i in range (10):
 print ("x ",end="")
 print()

Use a nested while and if
to print out only even
numbers

i=0
while i<51:
 if (i%2==0):
 print(i)
 i=i+1

Lists

Create a list shapes=["square","circle"]

Access element by index pos shapes[1] -> circle

Append item to list shapes.append(“triangle”)

Remove item from list shapes.remove(“circle”)

Remove item from list by
index

shapes.pop(1)

Insert item into list shapes.insert(2,”rectangle”)

Number of elements in a list len(shapes)

Get index pos of item in list shapes.index(“triangle”)

Concatenating lists shapesGroup1[“square”,”circle”]

shapesGroup2=[“triangle”]

shapes=shapesGroup1+shapesGroup2

Loop through list

for i in range(len(shapes)):

 print(shapes[i])

Reverse elements in a list shapes.reverse()

Order elements in a list shapes.sort()

2D lists - A list if lists

Create a 2D list

d = [[23, 14, 17], [12, 18, 37],
[16, 67, 83]]

Another way to
create a 2D list

a = [23, 14, 17]
b = [12, 18, 37]
c = [16, 67, 83]
d = [a,b,c]

Access element by
index position

d[1][2] -> 37

Strings

Get length of a string len(“Hello”) LEN(“Hello”)

Character to character code ord("a") -> 97 ORD("a")

Character code to character chr(101) -> ‘e’ CHR(101)

String to integer a=int(“12”) a=INT(“12”)

String to float a=float(“12.3”) a=FLOAT(“12.3”)

integer to string a=str(12) a=STR(12)

real to string a=str(12.3) a=STR(12.3)

Concatenation -merge multiple strings
together

a=“hello ”
b=“world”
c=a+b
print(c) ->
hello world

Return the position of a character
If there is more than 1 of the same
character the position of the first
character is returned.

student = “Hermione"
student.index(‘i')

Find the character at a specified
position

student = “Hermione"
print(student[2]) -> r

sub strings - select parts of a string

Example student=“Harry Potter”

Output the first two characters print(student[0:2]) Ha

Output the first three characters print(student[:3]) Har

Output characters 2-4 print(student[2:5]) Rry

Output the last 3 characters print(student[-3:]) Ter

Output a middle set of
characters

print(student[4:-3])

y Pot

*A negative value is taken from the end of the string.

Subroutines are a way of managing and organising programs in a structured
way. This allows us to break up programs into smaller chunks.
• Can make the code more modular and more easy to read as each function

performs a specific task.
• Functions can be reused within the code without having to write the code

multiple times.

• Procedures are subroutines that do not return values
• Functions are subroutines that have both input and output

Procedure:
No input
parameters or
return

SUB greeting()
 OUTPUT “hello”
ENDSUB

def greeting():
 print(“hello”)

call: greeting()

Procedure: One
input
parameter, no
return

SUB
greeting(name)
 OUTPUT
“Hello”,name
ENDSUB

def greeting(name):
 print(“Hello",name)

greeting(“grey”)

Function:
1 input
parameter, and
1 return value

SUB add(n)
 a ← 0
 FOR a ← 0 TO n
 a ← a + n
 ENDFOR
 RETURN a
ENDSUB

def add(n):
 a=0
 for a in range(n+1):
 a=a+n
 return a

Function:
Two input
parameters, and
1 return value

SUB (num1,num2)
 sum=num1+num2
 return sum

def add(num1,num2):
 sum=num1+num2
 return sum

greeting(1,2)

The scope of a variable determines which parts of a program can access and use
that variable.

A global variable is a variable that can be used anywhere in a program. The issue
with global variables is that one part of the code may inadvertently modify the
value because global variables are hard to track.

A local variable is a variable that can only be accessed within a certain block of
code typically within a function. Local variables are not recognized outside a
function unless they are returned. There is no way of modifying or changing the
behavior of a local variable outside its scope.

Global variables need to defined throughout the running of the whole program.
This is an inefficient use of memory resources. Local variables are defined only
when they are needed an so have less demand on memory. Local variables only
exist within the subroutine.

Reading and writing files

Open file Whatever we are doing to a file whether we are reading, writing or
adding to or modifying a file we first need to open it using:

open(filename,access_mode)

There are a range of access mode depending on what we want to do to the file, the
principal ones are given below:

Access Mode Description
r Opens a file for reading only
w Opens a file for writing only. Create a new file if one does not

exist. Overwrites file if it already exists.

a Append to the end of a file. Create a new file if one does not
exist.

Reading text files

read – Reads in the whole file into a
single string

f=open("filetxt","r")
print(f.read())
f.close()

readline – Reads in each line one at a
time

f=open("file.txt","r")
print(f.readline())
print(f.readline())
print(f.readline())
f.close()

readlines – Reads in the whole file into
a list

f=open("file.txt","r")
print(f.readlines())
f.close()

Writing text files

Write in single lines at a
time

file=open("days.txt",'w')
file.write("Monday\n")
file.write("Tuesday\n")
file.write("Wednesday\n")
file.close()

Write in a list say=["How\n”,”are\n”,”you\n”]
file=open("say.txt",'w')
file.writelines(say)
file.close()

Data Validation Routines

Check if an entered string has a
minimum length

OUTPUT “Enter String”
s  USERINPUT
IF LEN(S) > 5 THEN
 OUTPUT “STRING OK”
ELSE
 OUTPUT “TOO SHORT”
ENDIF

Check is a string is empty

OUTPUT “Enter String”
s  USERINPUT
IF LEN(S) == 0 THEN
 OUTPUT “EMPTY STRING”
ENDIF

Check if data entered lies within
a given range

OUTPUT “Enter number” s num 
USERINPUT
IF num > 1 AND num < 10
 OUTPUT “Within range”
ENDIF

Authentication Routine

OUTPUT “Enter Username”
username  USERINPUT
OUTPUT “Enter Password”
password  USERINPUT

WHILE username != "bart" OR password !="abc"

 OUTPUT “Login failed”
 OUTPUT “Enter Username”
 username  USERINPUT
 OUTPUT “Enter Password”
 password  USERINPUT

ENDWHILE

OUTPUT “Login Successful”

Debugging

Syntax errors – Errors in the code that mean the program will not even run at all.
Normally this is things like missing brackets, spelling mistakes and other typos.

Runtime errors – Errors during the running of the program. This might be because
the program is writing to a memory location that does not exist for instance. eg.
An array index value that does not exist.

Logical errors - The program runs to termination, but the output is not what is
expected. Often these are arithmetic errors.

Test data

Code needs to be tested with a range of different input data to ensure that it
works as expected under all situations. Data entered need to be checked to ensure
that the input values are:

• within a certain range
• in correct format
• the correct length
• The correct data type (eg float, integer, string)

The program is tested using normal, erroneous or boundary data.

Normal data - Data that we would normally expect to be entered. For example for
the age of secondary school pupils we would expect integer values ranging from 11
to 19.

Erroneous data - Data that are input that are clearly wrong. For instance, if some
entered 40 for the age of a school pupil. The program should identify this as
invalid data but at the same time should be able to handle this sensibly which
returns a sensible message and the program does not crash.

Boundary data - Data that are on the edge of what we might expect. For instance
if someone entered their age as 10, 11, 19 or 20.

