

1

2

3

4

5

No understanding

Exam-ready

5. HOMEOSTASIS & RESPONSERate topics 1 to 5

- a. Homeostasis
- b. The reflex arc
- c. The endocrine system
- d. Blood glucose control
- e. Diabetes
- f. Hormones in reproduction
- g. The menstrual cycle
- h. Contraception
- i. Treating infertility
- j. Thyroxine & adrenaline

6. INHERITANCE, VARIATION & EVOLUTIONRate topics 1 to 5

- a. Sexual & asexual reproduction
- b. Meiosis
- c. DNA structure
- d. The genome
- e. Alleles & inheritance
- f. Inherited disorders
- g. Sex determination
- h. Variation
- i. Selective breeding
- j. Genetic engineering
- k. Cloning
- l. The theory of evolution
- m. Speciation
- n. Fossils
- o. Extinction
- p. Antibiotic resistant bacteria
- q. Classification of organisms

7. ECOLOGYRate topics 1 to 5

- a. Communities & interdependence
- b. Abiotic & biotic factors
- c. Adaptations
- d. Food chains & webs
- e. Predator-prey cycles
- f. Carbon & water cycle
- g. Biodiversity
- h. Waste management
- i. Land use & deforestation
- j. Global warming
- k. Maintaining biodiversity

10. QUANTITATIVE CHEMISTRYRate topics 1 to 5**a. Balancing chemical equations****b. Conservation of mass****c. Relative formula mass****d. Percentage by mass****e. Estimating uncertainty****f. Moles****g. Using moles to calculate masses****h. Using moles to balance equations****i. Limiting reactants****j. Concentration****11. CHEMICAL CHANGES**Rate topics 1 to 5

- a. The reactivity series
- b. Reduction & oxidation
- c. Extracting metals by reduction
- d. Ionic & half equations
- e. Reacting acids with metals
- f. Neutralisation of acids & naming salts
- g. pH
- h. Strong & weak acids
- i. Electrolysis of molten ionic compounds
- j. Electrolysis of aqueous solutions

12. ENERGY CHANGESRate topics 1 to 5

- a. Exothermic & endothermic reactions
- b. Reaction profiles
- c. Calculating energy change of reactions

13. THE RATE & EXTENT OF CHEMICAL CHANGERate topics 1 to 5

- a. Calculating rate of reaction
- b. Factors affecting rate of reaction
- c. Collision theory & activation energy
- d. Catalysts
- e. Reversible reactions
- f. Le Chatelier's principle
- g. Factors which affect equilibrium

14. ORGANIC CHEMISTRYRate topics 1 to 5**a. Crude oil****b. Alkanes****c. Fractional distillation**

d.	Properties of hydrocarbons	
e.	Combustion reactions	
f.	Alkenes	
g.	Addition reactions	
h.	Cracking	
	15. CHEMICAL ANALYSIS	<u>Rate topics 1 to 5</u>
a.	Purity	
b.	Formulations	
c.	Paper chromatography	
d.	Tests for common gases	
	16. CHEMISTRY OF THE ATMOSPHERE	<u>Rate topics 1 to 5</u>
a.	Composition of Earth's atmosphere	
b.	Evolution of Earth's atmosphere	
c.	The greenhouse effect	
d.	Human activity & greenhouse gases	
e.	Global climate change	
f.	The carbon footprint	
g.	Atmospheric pollutants	
	17. USING RESOURCES	<u>Rate topics 1 to 5</u>
a.	Using Earth's resources	
b.	Potable water	
c.	Waste water treatment	
d.	Low-grade copper ores	
e.	Life cycle assessment	
f.	Recycling	
	22. FORCES	<u>Rate topics 1 to 5</u>
a.	Scalars & vectors	
b.	Contact & non-contact forces	
c.	Gravity & weight	
d.	Resultant forces	
e.	Vector diagrams	
f.	Work done	
g.	Springs & elasticity	
h.	Distance & displacement	
i.	Speed & velocity	
j.	Distance-time graphs	
k.	Acceleration	
l.	Velocity-time graphs	
m.	Terminal velocity	
n.	Newton's first law	
o.	Newton's second law & inertia	
p.	Newton's third law	
q.	Stopping distance & reaction time	

r.	Factors affecting braking distance	
s.	Momentum	

	23. WAVES	<u>Rate topics 1 to 5</u>
a.	Transverse & longitudinal waves	
b.	Properties of waves	
c.	Refraction	
d.	Ray diagrams (refraction)	
e.	Waves for detection & exploration	
f.	Electromagnetic (EM) spectrum	
g.	Radio waves	
h.	Risks of EM radiation	
i.	Uses of EM waves	

	24. MAGNETISM & ELECTRO-MAGNETISM	<u>Rate topics 1 to 5</u>
a.	Bar magnets	
b.	Magnetic fields	
c.	Electromagnets	
d.	The motor effect & Fleming's left-hand rule	
e.	Electric motors	

	EQUATIONS (not given in exam)	
	Weight = mass x gravitational field strength	$W = m g$
	Work done = force x distance	$W = F s$
	Force (applied to a spring) = spring constant x extension	$F = k e$
	Distance = speed x time	$s = v t$
	Acceleration = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
	Resultant force = mass x acceleration	$F = m a$
	Momentum = mass x velocity	$p = m v$
	Kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$	$E_k = \frac{1}{2} m v^2$
	Gravitational potential energy = mass x gravitational field strength x height	$E_p = m g h$
	Power = $\frac{\text{energy transferred}}{\text{time}}$	$P = \frac{E}{t}$
	Power = $\frac{\text{work done}}{\text{time}}$	$P = \frac{W}{t}$
	Efficiency = $\frac{\text{useful energy out}}{\text{total energy in}}$	
	Efficiency = $\frac{\text{useful power out}}{\text{total power in}}$	
	Wave speed = frequency x wavelength	$v = f \lambda$
	Charge = current x time	$Q = I t$
	Potential difference = current x resistance	$V = I R$
	Power = potential difference x current	$P = V I$
	Power = $(\text{current})^2 \times \text{resistance}$	$P = I^2 R$
	Energy transferred = charge x potential difference	$E = Q V$

PRACTICALS	Rate topics 1 to 5
RP 6: "Investigate the effect of a specific factor on human reaction time."	
RP 7: "Use sampling techniques to investigate the effect of a specific factor on the distribution of a species in a habitat."	
RP 9: "Investigate the electrolysis of aqueous solutions (a hypothesis must be formed and developed)."	
RP 10: "Investigate factors affecting temperature change when reacting solutions together."	
RP 11a: "Investigate how concentration affects the rate of reaction by measuring the volume of gas produced (a hypothesis must be formed and developed)."	
RP 11b: "Investigate how concentration affects the rate of reaction by observing a colour change (a hypothesis must be formed and developed)."	
RP 12: "Use paper chromatography to separate coloured substances and determine R_f values."	
RP 13: "Identify pH and amount of dissolved solids in water samples from different sources, and use distillation to purify them."	
RP 18: "Investigate the relationship between force and extension of a spring."	
RP 19: "Investigate separately how varying the force and mass of an object affect its acceleration."	
RP 20: "Measure the frequency, wavelength and speed of waves in a ripple tank, and waves in a solid."	
RP 21: "Investigate how the amount of infrared radiation absorbed and radiated depends on the type of surface."	